epoll特点
- select,poll实现需要自己不断轮询所有fd集合,直到设备就绪,期间可能要睡眠和唤醒多次交替。而epoll其实也需要调用epoll_wait不断轮询就绪链表,期间也可能多次睡眠和唤醒交替,但是它是设备就绪时,调用回调函数,把就绪fd放入就绪链表中,并唤醒在epoll_wait中进入睡眠的进程。虽然都要睡眠和交替,但是select和poll在“醒着”的时候要遍历整个fd集合,而epoll在“醒着”的时候只要判断一下就绪链表是否为空就行了,这节省了大量的CPU时间。这就是回调机制带来的性能提升。
- select,poll每次调用都要把fd集合从用户态往内核态拷贝一次,并且要把current往设备等待队列中挂一次,而epoll只要一次拷贝,而且把current往等待队列上挂也只挂一次(在epoll_wait的开始,注意这里的等待队列并不是设备等待队列,只是一个epoll内部定义的等待队列)。这也能节省不少的开销。
epoll模式
模式:LT(水平触发)和ET(边缘触发)
- LT:事件就绪时,假设对事件没做处理,内核会反复通知事件就绪。
- ET:事件就绪时,假设对事件没做处理,内核不会反复通知事件就绪。ET只支持非阻塞模式。
应用层逻辑
- ET:ET模式下读写操作要时用wihle循环,直到读/写够足够多的数据,或者读/写到返回EAGAIN。尤其时在写大块数据时,一次write操作不足以写完全部数据,或者在读大块数据时,应用层缓冲区数据太小,一次read操作不足以读完全部数据,应用层要么一直调用while循环一直IO到EGAIN,或者自己调用epoll_ctl手动触发ET响应。(只要可读,就一直读,直到返回0或者errno=EAGAIN;只要可写,就一直写,直到数据发送完或者errno=EAGAIN)
问题
LT模式下,可写状态的fd会一直会触发事件,该怎么处理?
答:
1.每次要写数据时,将fd绑定EPOLLOUT事件,写完后将fd同EPOLLOUT从epoll中移除。
2.方法一中每次写数据都要操作epoll。如果数据量很少,socket很容易将数据发送出去。可以考虑改成:数据量很少时直接send,数据量很多时在采用方法1。
ET模式下,如果多个连接同时到达,服务器的TCP就绪队列瞬间积累多个就绪连接,由于是边缘触发模式,epoll只会通知一次,accept只处理一个连接,导致TCP就绪队列中剩下的连接都得不到处理怎么办?
答:
用while循环包住accept调用,处理完TCP就绪队列中的所有连接后再退出循环。如何知道是否处理完就绪队列中的所有连接呢?accept返回-1并且errno设置为EAGAIN就表示所有连接都处理完。
归纳
1.对于监听的sockfd要设置成非阻塞类型,触发模式最好使用水平触发模式,边缘触发模式会导致高并发情况下,有的客户端会连接不上。如果非要使用边缘触发,网上有的方案是用while来循环accept()。 2.对于读写的connfd,水平触发模式下,阻塞和非阻塞效果都一样,不过为了防止特殊情况,还是建议设置非阻塞。 3.对于读写的connfd,边缘触发模式下,必须使用非阻塞IO,并要一次性全部读写完数据。
方法
-
int epoll_create(int size); 创建一个epoll的句柄,size用来告诉内核这个监听的数目一共有多大。这个参数不同于select()中的第一个参数,给出最大监听的fd+1的值。需要注意的是,当创建好epoll句柄后,它就是会占用一个fd值,在linux下如果查看/proc/进程id/fd/,是能够看到这个fd的,所以在使用完epoll后,必须调用close()关闭,否则可能导致fd被耗尽。
-
int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event); epoll的事件注册函数,它不同与select()是在监听事件时告诉内核要监听什么类型的事件,而是在这里先注册要监听的事件类型。第一个参数是epoll_create()的返回值,第二个参数表示动作,用三个宏来表示: EPOLL_CTL_ADD:注册新的fd到epfd中; EPOLL_CTL_MOD:修改已经注册的fd的监听事件; EPOLL_CTL_DEL:从epfd中删除一个fd;
-
int epoll_wait(int epfd, struct epoll_event * events, int maxevents, int timeout); 等待事件的产生,类似于select()调用。参数events用来从内核得到事件的集合,maxevents告之内核这个events有多大,这个 maxevents的值不能大于创建epoll_create()时的size,参数timeout是超时时间(毫秒,0会立即返回,-1将不确定,也有说法说是永久阻塞)。该函数返回需要处理的事件数目,如返回0表示已超时。
使用
通过在包含一个头文件#include <sys/epoll.h> 以及几个简单的API将可以大大的提高你的网络服务器的支持人数。
首先通过create_epoll(int maxfds)来创建一个epoll的句柄,其中maxfds为你epoll所支持的最大句柄数。这个函数会返回一个新的epoll句柄,之后的所有操作将通过这个句柄来进行操作。在用完之后,记得用close()来关闭这个创建出来的epoll句柄。
之后在你的网络主循环里面,每一帧的调用epoll_wait(int epfd, epoll_event events, int max events, int timeout)来查询所有的网络接口,看哪一个可以读,哪一个可以写了。基本的语法为: nfds = epoll_wait(kdpfd, events, maxevents, -1); 其中kdpfd为用epoll_create创建之后的句柄,events是一个epoll_event*的指针,当epoll_wait这个函数操作成功之后,epoll_events里面将储存所有的读写事件。max_events是当前需要监听的所有socket句柄数。最后一个timeout是 epoll_wait的超时,为0的时候表示马上返回,为-1的时候表示一直等下去,直到有事件范围,为任意正整数的时候表示等这么长的时间,如果一直没有事件,则范围。一般如果网络主循环是单独的线程的话,可以用-1来等,这样可以保证一些效率,如果是和主逻辑在同一个线程的话,则可以用0来保证主循环的效率。epoll_wait范围之后应该是一个循环,遍利所有的事件。
伪框架:
for( ; ; )
{
nfds = epoll_wait(epfd,events,20,500);
for(i=0;i<nfds;++i)
{
if(events[i].data.fd==listenfd) //有新的连接
{
connfd = accept(listenfd,(sockaddr *)&clientaddr, &clilen); //accept这个连接
ev.data.fd=connfd;
ev.events=EPOLLIN|EPOLLET;
epoll_ctl(epfd,EPOLL_CTL_ADD,connfd,&ev); //将新的fd添加到epoll的监听队列中
}
else if( events[i].events&EPOLLIN ) //接收到数据,读socket
{
n = read(sockfd, line, MAXLINE)) < 0 //读
ev.data.ptr = md; //md为自定义类型,添加数据
ev.events=EPOLLOUT|EPOLLET;
epoll_ctl(epfd,EPOLL_CTL_MOD,sockfd,&ev);//修改标识符,等待下一个循环时发送数据,异步处理的精髓
}
else if(events[i].events&EPOLLOUT) //有数据待发送,写socket
{
struct myepoll_data* md = (myepoll_data*)events[i].data.ptr; //取数据
sockfd = md->fd;
send( sockfd, md->ptr, strlen((char*)md->ptr), 0 ); //发送数据
ev.data.fd=sockfd;
ev.events=EPOLLIN|EPOLLET;
epoll_ctl(epfd,EPOLL_CTL_MOD,sockfd,&ev); //修改标识符,等待下一个循环时接收数据
}
else
{
//其他的处理
}
}
}
本文由 Ryan 创作,采用 知识共享署名4.0 国际许可协议进行许可
本站文章除注明转载/出处外,均为本站原创或翻译,转载前请务必署名
最后编辑时间为:
2020/05/20 20:15